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Abstract-A continuum mixture theory combined with the linear operator method is used to solve the 
problem of transient heat conduction in a rectangular trilaminated fin. Applying the continuum mixture 
theory and the linear operator method reduces the problem to that of a coupled Sturm-Liouville problem. 
A method is developed to find eigenvalues and eigenfunctions of the coupled Sturm-Liouville problem. 
Transient conduction in both symmetrical and asymmetrical rectangular fins is illustrated. It turns out 

that the asymmetrical fin performs better than the symmetrical one in terms of efficiency. 

INTRODUCTION 

A FIN has been widely used as a device to increase 

the rate of heat transfer between an object and its 
surrounding fluid. The problem of transient heat con- 
duction in a fin was solved a long time ago by various 
investigators [l-5]. The one-dimensional approxi- 

mation to heat conduction in a fin is valid only when 
the Biot number is small [6, 71. Chu et al. [8] studied 
the transient conduction in a rectangular fin by using 
the Laplace transformation method and obtained 
Laplace inversion by the numerical method. The val- 
idity of numerical inversion of the Laplace trans- 
formation was discussed by Davis and Martin [9]. 
Recently Ju et al. [IO] applied continuum mixture 
theory [l l-131 to solve the transient conduction in a 
rectangular fin and found that the method was very 

efficient in reducing the two-dimensional problem of 
transient heat conduction in a rectangular fin to that 

of a one-dimensional problem. 
Under certain circumstances, the fin is in contact 

with high temperature or corrosive fluid. A layer of 
high strength or corrosion resistant material is coated 
on each side of the fin to withstand the harsh environ- 
ment. Barker [14] studied the steady-state heat con- 
duction in a rectangular composite fin. Chu et ui. 
[ 151 solved the problem of transient conduction in 
a trilaminated rectangular fin by using the Laplace 

transformation and separation of variables methods. 
The accuracy of their solution is dubious since the 
numerical inversion of the Laplace transformation is 
tedious and the series converges very slowly [16]. 

t Author to whom correspondence should be addressed. 

In this work, a continuum mixture theory combined 
with a linear operator method were applied to solve 

the transient conduction in a trilaminated rectangular 
fin. A method is developed to solve the resulting 
coupled Sturm-Liouville problem. Though there is a 
maximum of 30% error between results of this work 
and those presented by Chu et al. [15]. close agreement 

between the results of this work and the numerical 
solution of Ghoshdastidar and Mukhopadhyay [ 171 
confirms the correctness of the results of this work. 

PROBLEM FORMATION AND SOLUTION 

Consider a rectangular fin composed of three layers 
of different material as shown schematically in Fig. I. 
The following assumptions arc applied. 

(1) The convective heat transfer coefficients on two 

sides of the fin h, and h, are constant. 
(2) The rate of heat transfer from the tip of the tin 

is negligible. 
(3) All physical properties are constant. 
(4) Perfect contact at the interpdce between layers 

of different material. 
(5) For t < 0, the fin is in thermal equilibrium with 

the surrounding fluid. For t > 0. the base of the fin is 
subject to a step change in temperature. 

The equation of energy conservation for the fin can 
be expressed as 

where the constitutive equations arc 

IO97 
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NOMENCLATURE 

(4, constant. equation (25) 
Bi Biot number, &/a = &/c: 

b, constant, equation (26) 
h* thickness of fin 

g matrix, equation (43) 

(‘I constant, equation (28) 
r; first component of eigenvector Wj 

* L;, heat capacity of fin 
D(L) domain of L 

4 matrix, equation (43) 
f?, second component of eigenvector W; 

c matrix. equation (43) 

,;A 
third component of eigenvector Wi 
vector. equation (44) 

c vector, equation (44) 

H, subspace 

&I convection heat transfer coefficient 
113 convection heat transfer coefficient 
H Hilbert space 
k* thermal conductivity of fin 
K thermal conductivity ratio of base 

material to coating material 
I” length of fm 
L operator, equation (44) 
L self-adjoint operator, {L, D(L)) 

p, weighting function 

pi, ijth component of the matrix P 

p,; ’ j,ith component of matrix g- ’ 

4V heat flux in the x-direction 

Y,! heat flux in the y-direction 

Q heat transfer rate 
T temperature of fin 

TX. temperature of ambient fluid 

T0 initial temperature of fin 
t time 
.Y .Y coordinate 
.I: y coordinate. 

Greek symbols 
x thermal diffusivity ratio of base material 

to coating material 
R perturbation parameter, b*/l* 
II temperature defined in equation (44) 
A eigenvaluc 

P* density of fin. 

Subscripts 
i ith layer of the trilaminated fin 

.i ,jth eigenvalue or eigenvector 
vector 

E matrix. 

Superscripts 
average, equation (3 1) 

; 
ith branch of eigenvaiue 
transpose of matrix 
differentiation 

* dimensional quantity. 

L’* = y:, yv = h:( T$ - T$ ) (7) 
c-4 

i= 1,2,3 
.Y* = 0, T: = T,* 

I 

(8) 

(3) x* = I* aT* .__L = 0 
i= 1,2,3 

’ ax* (9) 

with boundary conditions and initial conditions 

4’* = 0, q,* = h,:( 7-Z. - 7-g) (4) 

.r* = L’:, (r:: = 4;+, (5) 
i= I,2 

I’* = .,I;+, T: = T,*, , (6) 

Y" 

i 

Y: i* 

yz” 
G 

-T 
b 

d I 

!----4------J x” 

FrG. I. Schematic diagram of triiaminated fin. 

f* =O, T; = T:, i= 1,2,3. (10) 

Equations (5) and (6) are interface conditions 
which state that flux and temperature are continuous 
at the interfaces. 

By defining the following dimensionless variables : 

Equations (I)-( IO) become 

i= 1,2,3 (II) 
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q. 
r, 

= _k.“l? 
1 ax 1 (12) T, = Ty’-; S ;y2+b,y+ci +O(E4) (29) 

i= 1.2.3 

)) “zq,, = _kT, ” 
1 ay 1 

y=O, e.=$--T) 

(13) 
q_,,, = a,y+b,+O(E2). (3f 

The average of T,(x, y, t) and q,(x, y, t) is defined as 

(14) 

s 

): 
T, (x, Y, t) dY 

Y = YK 4V, = 4V,+, 

> 

(15) F&X, t) = I’,+’ (31 
i= 1,2 Y, -Y,+ I 

Y=Y,> T = r,,, (16) 
;IF 

1 

&(x, t) = -k, 2. (32) 
Y = Y3, qy =;(G-L) (17) 

Substituting equation (30) into equation (11) and then 

x = 0, T, = To 

‘r 

(18) applying the average as that defined in equations (3 1) 

X= 1, %=O i=l,2,3. 

and (32) yields 

dX 
(19) 

t = 0, T, = T, (20) 
(Y,-Y,-1) 

[ 
,;cP!$+% 1 = -a,(Y,-Y,+I), 

Since E = b*/l* CC 1, we use the regular perturbation i= 1,2,3. (33) 
method and express each dependent variable in the 
following form : Similarly the average of equation (29) gives 

f= t pp. 
“= I 

(21) i;, = 
rl’ fY,Y,-- 1 +Y?- I 

6 a, 

After expressing each dependent variable in the 
form as shown above, we have the zeroth (a’) order 
equations for equations (1 1)-( 13) as 

ap ap 
p,c,, y + 2 + Y, = 0 

aY 

-0 

a T’O’ 
4s -- I 

Co)_ kL 

ax . 

(22) 

(23) 

(24) 

Substituting equation (34) into equation (29) gives 

- a2 
rj = T, + ki 

Y:+YiY,+ I +Y?- I 

( 

+ill,,)-&y2+b,y). (35) 

Substituting equation (35) into the interface 

From equations (23) and (24), we have 
condition, i.e. equations (15) and (16) gives 

TI”’ = T~“(x, t). q:y’ = qLy’(x, t), then from equation 
(22) we have ~,+~~~,+~b,)-~~~y:+b,y,) 

and hence 

(25) = j? +c 

’ k2 

qs;’ = a; y + b, (2’9 

where ai = a,(X, t), b, = bi(x, t). From the first-order 

(E’) equations, we have s2 
T,+, 

Y:+YIY2+YIU +Y,fYI 
6 

2 
2 

2b, 

(36) 

(0) = 
dT!” 

qv, _k I_. 

1 ay 
Integration of equation (27) yields 

(27) 

1 ai 
Tj” = -k, 

( 
2y2+b,y+c, 

) 
(28) 

where ci = c;(x, t). 
If we expand T, up to E’ and q,, up to .s”, we have 

+ Y3+Y2 
Tb?) - ;@yI+b3yz) (37) 

a,~, +b, = azYz+b, (38) 

a,Y, +bZ = a,Y, +k. (39) 
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Similarly from the external boundary conditions, i.e. 
equations (14) and (17), we have 

Equations (36)-(41) can be put into the following 
form : 

p,, = 

p,, = 

p‘l, = p42 = p,, = P,, = 0 

-,l’21’3 -2y5) 
6k, 

E? 
P,, = h + 

“yvJ -y2) 

1 
Ty , Pi, =J’, 
- ‘1 

P,, = 1, P,, = -)‘,, P,, = -1 

Pss = P 56 = 0, P,, = PhZ = 0, P,,; = _I‘? 

Ph4 = 1. P,, = -Jz, P,, = - I. 

From equation (41). we have _V = am ‘&I and hence 
a, can be expressed as T) and T, Substituting a, into 
equation (33), we have 

cg _/? = DT+GT, 
= i;.Xi’ = - (43) 

where r= [F,. Pz, FJ’ 

0 

D,, = -,v,[P,,‘-P,,‘], D,, = -y,[P,i’-P,z’] 

D,, = -.v,[P,J’-PI?‘1 

Dz, = 0, -?.d[Pv -&,‘I 

D,z = (y, -y>)[Py/ - Piz’] 

Dzl = (.v, -MPd -f’,>‘l 

D3, = (y2-!.3)[P’2’ -Pi,‘] 

Diz = (.v-.MP~~’ -&,‘I 

Dj1 = t.1.2 -J,UP,, - Psi’1 

G = [-.Y,(P, I’ -K,‘), (?)I -,rz)(P,, - Pl,‘), 

(.1.2-_?,?)(P~,‘-Ppj’)]‘. 

Though tedious, it can be shown straightforwardly 
that 4 is a symmetric matrix. The corresponding 

initial and boundary conditions for equation (43) are 

i= 1,2,3 

Let 0, = T, - T,,, and substitute equation (43) and its 
boundary conditions into the following form : 

c’tj 

it 
= -LO+.f 

cl(.r. 0) = (T, - T,,)1 

t&o, t) = Q 

iu 
c?s ,= , =o (44) 

where 

!!= [U,,U2,U,]‘,Q= [O,O,OIT,_I= [l,l,l]’ 

f’= go ‘Q/T,,+I’-‘GT,. 

A direct sum space is defined as 

H=H,OHz@H, 

where H, = (Lz[O, 11; p,} consists of function c$,(.x) 
defined in [0, I]. p, is the weighting function, p, = 

.J‘ I P I ‘;I I 1 Pz = (Y-YOP2L.pZ. P? = (1.i-.v2)piL./?ir 
4,(x) satisfies the Lcbesque integral 

An element in H is an ordered triple and can be 
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viewed as a vector. For r$ EH and ti EH, the inner 

product of 4 and $ is defined as - - _ 

($9 $> = i: w,,(J+ -Y,- 1) 0’ &(x)$i(x) dx 
I= I s 

with y, = 0. Then H is a Hilbert space. The domain 
of operator L is defined as 

D(L) = {$EH;L$EH;$(O,~) = Q,$r’I,= ,) = 0). 

Then L = {L, D(L)} is a self-adjoint operator in H, 

i.e. 

(L4, $> = (9, LI1/) for every 4, $ EH. _ _ _ _ 

Since L is a compact and self-adjoint operator in H, 

the associate eigenvalue problem is 

LW= n@J. (45) 

Equation (45) is a set of three coupled Sturn-Liou- 
ville problems. The solution of equation (45) consists 
of three branches of eigenvalue i’,, A;, ;(;, , with 
corresponding eigenfunctions W’, , W:, Wi,, . . . , 
i = 1, 2, 3. The operator L is very similar to that in 
the work of Arce and Ramkrishna [18], L-’ is not 
compact and has two branches of eigenvalues that 
have non-zero accumulation points. According to the 
linear operator theory [19], these eigenvalues are all 
real and positive. Any vector d E H can be represented 

as 

(46) 

where (& w;) can be found from the solution of the 
following equation which is obtained by taking the 
inner product of equation (44) with vj : 

gee, FY;> = -<LB, w;)+(~ w;> 

= -nj<e, tY;‘:> + <L w;>. (47) 

The solution of equation (47) with the initial con- 

dition (0, vi) = (&, I$) at t = 0 is 

(48) 

It is clear from the above description that after 
applying the continuum mixture theory and the linear 
operator method the solution of the problem of tran- 
sient conduction in a rectangular trilaminated fin 
becomes straightforward if the solution of equation 
(45) is available. Equation (45) is a set of three coupled 
Sturm-Liouville problems. Though conceptually 
simple to solve, it is by no means simple even to 
resolve the numerical method [20]. Hsiao [21] tried 
to solve equation (45) by the shooting method and 
found that unless the coupling between equations is 
very weak and that the initial guesses are very close 
to true values, numerical integration will diverge and 

solutions are difficult to obtain especially for the 
branch of eigenvalues with the smallest absolute 

value. The detail for the solution of equation (45) is 
given in the Appendix. 

After obtaining the temperature distribution of the 
fin, the dimensionless heat transfer rate can be cal- 

culated as 

,=-CQ$ _ (x -YL- I). (49) 
,= I 1; 0 

RESULTS AND DISCUSSION 

As described before, Chu et al. [15] were the 

first to solve the problem of the transient conduc- 
tion in a rectangular, symmetrical, trilaminated fin. 
The unsteady two-dimensional energy equation was 
solved by taking the Laplace transformation with 
respect to the time domain first and the resulting equa- 
tion was then solved by the eigenfunction expansion 
method. After the solution in the transformed plane 
was obtained, the Fourier series technique was then 
used to obtain its inverse transformation. This same 
problem is solved by the method proposed in this 
work and for a particular set of parameters, results 
obtained by this work and those of Chu et al. are 
presented in Fig. 2 for comparison. It can be seen that 
there are considerable differences in the temperature 
distribution especially when time is small. Since our 

results exactly match those of Ghoshdastidar and 
Mukhopadhyay [ 171 obtained by using the numerical 
method, we believe that the results of Chu ef al. are 
incorrect especially when time is small since the use of 
the Fourier series method in the numerical inversion of 

’ soln. E =d.05 
--- Chu. soln. ff =0.2 

K =40 

.o 0.2 0.4 0.6 0.8 1.0 

X 
FIG. 2. Comparison of temperature distributions in the fin 

obtained by three different methods. 
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Table I. Typical eigenvalues of a coupled Sturm-Liouville problem 

No. Pi i: 2; i; 

1 2.46740110 28 049.56628010 1502.19993963 11.71347991 
2 22.20660990 28 07 I .827904 I3 1504.72373586 35.92318524 
3 61.68502751 28 116.35166377 1509.88454167 72.23067084 
4 120.90265391 2X 183.13857639 1517.92783729 126.38763917 
5 199.85948912 28 272.19015366 1529.27484499 197.97195630 
6 298.55553313 28 383.50838456 1544.60313677 286.30406125 
7 416.99078595 2X 517.09571342 1564.98885346 390.30536884 
8 555.16524756 28 672.95501330 1592.15358156 508.25141954 
9 713.07891798 28 851.08955533 1628.88038883 637.35587445 

IO 890.73179720 29051.50297460 1679.64828753 773.13608620 

the Laplace transform causes the solution to converge 
too slow [ 161 to obtain a reasonably accurate solution. 

Besides being simpler, the method proposed in this 

work can be used to deal with asymmetrical tri- 
laminated fins. Asymmetry is caused either by a 
different coating on two sides of the base material or 
by a different convective heat transfer coefficient on 
two sides of the fin. Consider the problem of transient 
heat conduction in a three-layer asymmetrical rec- 

tangular fin. The base material is copper and has a 
dimensionless thickness of 0.9. On one side is a layer 

of stainless steel with a thickness of 0.08 and on the 
other side is a layer of gold with a thickness of 0.02. 
Convective heat transfer coefficients on both sides 
are assumed to be equal and B, = ~,JE = hJ& = 2.0, 
E = 0.1. Table 1 shows three branches of the first ten 
eigenvalues (I’,, i = 1,2,3 ; j = 1, 2,. . 10) of equa- 
tion (45) together with eigenvalues in the transformed 

domain (p,, ,j = 1,2,. , 10). 

As discussed by Chu rt al. [ 151, the thermal con- 
ductivity ratio is the most important parameter that 
affects the performance of the fin. Figure 3 shows the 
effect of the ratio of thermal conductivity of the base 
material to that of the coating material on the dimen- 
sionless rate of heat transfer for a three-layer sym- 

0.10 I / ‘, , r,v, ‘, r,r, 8 (1 

a =0.2 

0.08 - Bi=O.Z 

Q 

I, I I 
o-o%05 q25 

I I I III I I, I, I 
0.45 0.65 0.85 

t 

FIG. 3. Effects of thermal conductivity ratio on the 
formance of a symmetric trilaminated fin. 

per- 

metric fin. Since the ratio of thermal conductivity of 

copper to stainless steel is more than 20, it is clear 
from Fig. 3 that the symmetrical coating of stainless 
steel on copper seriously hampers the rate of heat 
transfer of the fin. The addition of stainless steel is 
sometimes necessary since it both increases the 
strength of the fin and at the same time protects the 
base material from the harsh environment. Are there 
other designs of a trilaminated fin that could add 

enough material strength and protect the base 
material without seriously hampering the heat trans- 

fer rate of the tin? The answer is the asymmetrical 
trilaminated fin described previously. With other par- 
ameters fixed, the performances of three different 
designs on a trilaminated fin are shown in Fig. 4 for 
comparison. Curve 1 is for a tin made of copper. 

Curve 2 is for an asymmetrical trilaminated fin made 
of three different materials ; the base material is copper 
with a thickness of 0.9, on one side is a coating of 
stainless steel with a thickness of 0.09 and on the other 

side is a coating of gold with a thickness of 0.01. Curve 
3 is for an asymmetrical trilaminated fin made of two 
different materials ; the base material is copper with a 

5 

5 o.15.L____--__?__----_-_~ 
z 

- Curve 1 Cu 

E 2 SS/Cu/Au =0.09/0.9/0.01 - 

U$ O.lO- 3 ss/cu/ss =0.09/0.9/0.01- 

F 
4 ss/cu/ss= 0.05/0.9/0.05 - 

Dimensionless time t 

FIG. 4. Comparison of the perforrmances of four kinds of 
design of rectangular fin. 
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thickness of 0.9 and on two sides of the base material 
there is a layer of stainless steel with thickness of 0.09 

and 0.01, respectively. Curve 4 is for a symmetrical 
trilaminated fin ; copper is the base material with a 
thickness of 0.9, there is a layer of stainless steel with 
a thickness of 0.05 on each side of the base material. 
From curves 3 and 4 of Fig. 4, it is clear that with 
other parameters fixed, an asymmetrical fin performs 
better than the symmetrical one. Since gold has a 
considerably higher thermal conductivity than stain- 
less steel, the replacement of stainless steel with a thin 
layer of gold on one side of the base material greatly 

increases the efficiency of the trilaminated fin. Hence 
the best design for a trilaminated fin should be asym- 

metrical with copper as the base material and most 
stainless steel added on one side of the copper for the 
purpose of increasing the strength of the fin; the other 

side of the fin should be a thin layer of gold or if not 
economically possible, a layer of stainless steel as thin 

as possible. 

CONCLUSION 

We have successfully applied the continuum mix- 

ture theory and linear operator method in solving 
the problem of transient conduction in a rectangular, 
trilaminated fin. We have shown that an asymmetrical 
composite fin performs better than the symmetrical 
counterpart in terms of fin efficiency. The method 

proposed in this work can be applied to a composite 
fin of other geometry without difficulty. 
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APPENDIX 

Consider the following set of coupled Sturn-Liouville 
problems 

[r(x) Y’l’+ hG4_l+pWAl _U = 0 (A0 

with boundary conditions 

Y(a) + aLr’(a) = 0 (A2) 

Uh) +@Y’(b) = n (A3) 

where r(T), q(x) and p(.\-) are piecewise continuous functions 
in [cr.& Y= [y,(.~),y~(x) ,..., y,(x)]‘.A = [A,,] and 
+, = a,,+S,,h,l (no summation). Assuming that b~ is the 
etgenvalue of 4 with the corresponding eigenvector v then 
we have - 

or 

det [q -&I = 0. (A4) 

Equation (A4) is an nth order binomial in p and d, i.e. 

a,l”+a,l”~‘~+uzi.“~Z~2+ “’ +u,_,Ip” ‘+a,@ = 0. 

(A5) 

For a fixed 1, assume that equation (A5) has n distinct 
roots p,. g2,. , pn with the corresponding eigenvectors I’,, 
V2,. , Yn. Then from elementary matrix theory, 2 = [I’,, 
Ii?,. , Y,,] is nonsingular and we have 

where 

S_‘&= B = (A6) 

@ = [B,,], B,, = &,I, (no summation). (A7) 
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Hence if we assume that 8 is known, let y = 
stituting it into equations (Al)-(A3). we have 

[rbwl’ + [q(x)L+ ~bm$ = 0 - _ 

$44 + d$‘W = 0 

$@I + @j’(b) = 0. 

Y.-H. Ju ct ul. 

&‘4 and sub- the following form : -_ 

[G9~‘l’f [q(x) + K~h44 = 0 (All) 
(AX) &a) + a&(u) = 0 (A12) 

(A9) 4(b) +/I@(b) = 0. (A13) 

(Al@ Eigenvalues p, with corresponding eigenfunctions d, of 
equations (Al l))(A13) can be solved easily by numerical 

Though equations (A8))(AlO) are still a set of Sturm-- integration [22]. Eigenvalues and eigenfunctions ofequations 

Liouville problems, however, they are decoupled. The three (Al)-(A3) can then be obtained by substituting p, and 4, 

Sturm-Liouville problems are exactly the same and are of into equation (AS) and r = @. 

CONCEPTION DUNE AILETTE RECTANGULAIRE TRILAMINEE 

Resum&Une theorie de continuum combinee avec la methode de l’operateur lineaire est utilisee pour 
resoudre le probleme de la conduction thermique variable darts une ailette rectangulaire trilaminee. En 
appliquant cette approche on reduit ce probltme a un probleme couple de Sturm-Liouville. Une methode 
est developpee pour trouver les valeurs propres et les fonctions propres du probltme. On illustre la 
conduction variable darts des ailettes symetriques et asymetriques. On trouve que l’ailette asymetrique est 

plus efficace que la disymetrique. 

BERECHNUNG EINER DREILAGIGEN RECHTECKRIPPE 

Zusammenfassung-Mit Hilfe einer Kontinuums-Misch-Theorie und eines linearen Operatorverfahrens 
wird das Problem der transienten Warmeleitung in einer dreilagigen Rechteckrippe gel&t. Durch Anwen- 
dung dieses Verfahrens vereinfacht sich das Problem auf ein gekoppeltes Sturn-Liouville-Problem. Zur 
Bestimmung der Eigenwerte und der Eigenfunktionen des gekoppelten Sturn-Liouville-Problems wird ein 
besonderes Verfahren entwickelt. Die transiente Wlrmeleitung in symmetrischen und in nicht-sym- 
metrischen Rechteckrippen wird gezeigt. Es zeigt sich, da13 im Hinblick auf den Wirkungsgrad sich die 

asymmetrische Rippe besser verhalt als die symmetrische. 

PACgET TPEXCJ’IOnHOI-0 I-IPRMOY~OJIbHOI-0 PE6PA 

~oTa~e_Teop~nCnnOmH~XCpen B CO~eTaHWH CJUiHehiblM OnepaTOpHbIMMeTOAOM HCl'lOnb3yeTCK 

PJIK ~UIeHtiX 3WaWi HecTaIWOHapHOfi TeMOnpOBO~HOCTli B IIpKMO~OJtbHOMT~XCJIOiiHOM petipe. kiX 

npmfeHeHHe no3nonneT CnemH peruaehsylo sanaqy K conpnmemroli sanaqe IBrypMa-Btiyesutnn.Pa3pa- 
6aTbtBaeTCK MeTOn OTMCKaHHIl CO6CTBeHHbIX 3HaYeHd II C06CTBeHHblX (PyHL& 3TOa S~aWi.PacCWi- 

TblBaeTCIl HeCTaIJHOHapHaK TeMOIlpOBOruIOCTb KPK B CHMMeTpBSHblX, TaK &i B HeCHMMe~HYHbIX 
npKMoyronbHbIxpe6paX.Ha~neHo,Y~0HeCHMMeTpHYHMepe6pa6o~ee3~KTHBHbI. 


